k-super cube root cube mean labeling of some corona graphs

V. Princy Kala (1)
Holy Cross College (Autonomous), India
Received: October 2021. Accepted: March 2022

Abstract

Let G be a graph with $|V(G)|=p$ and $|E(G)|=q$ and $f: V(G) \rightarrow$ $\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ be an one-to-one function. The induced edge labeling f^{*}, for a vertex labeling f is defined by $$
f^{*}(e)=\left\lfloor\sqrt[3]{\frac{f(u)^{3}+f(v)^{3}}{2}}\right\rfloor \text { or } \quad\left[\sqrt[3]{\frac{f(u)^{3}+f(v)^{3}}{2}}\right.
$$ for all $e=u v \in E(G)$ is bijective. If $f(V(G)) \cup\left\{f^{*}(e)\right.$: $e \in E(G)\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$, then f is known as a k-super cube root cube mean labeling. If such labeling exists, then G is a k-super cube root cube mean graph. In this paper, I prove that $T_{n} \odot K_{1}, A\left(T_{n}\right) \odot K_{1}, A\left(T_{n}\right) \odot 2 K_{1}, A\left(Q_{n}\right) \odot K_{1}, P_{n} \odot K_{1,2}$ and $P_{n} \odot K_{1,3}$ are k-super cube root cube mean graphs.

Keywords: K-Super cube root cube mean labeling, Alternate snake graph, $A\left(T_{n}\right) \odot K_{1}, A\left(T_{n}\right) \odot 2 K_{1}, T_{n} \odot K_{1}, A\left(Q_{n}\right) \odot K_{1}, P_{n} \odot$ $K_{1,3}$.

1. Introduction

In this paper, all graphs are simple, finite, and undirected. Labeling of a graph is an assignment of integers to the vertices or edges or both subject to certain conditions. Several types of graph labeling and an extensive survey are available in [1]. Standard notations of F.Harary [2] are followed here. Somasundaram and Ponraj [5] introduced mean labeling. Let G be a graph with $\mathrm{V}(\mathrm{G})=\mathrm{p}$ and $\mathrm{E}(\mathrm{G})=\mathrm{q}$. A mean labeling f is an injection from V to the set $\{0,1,2, \ldots, \mathrm{q}\}$ such that every edge uv , is labelled with $\frac{[\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})]}{2}$ if $[\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})]$ is even and $\frac{[\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})]+1}{2}$ if $[\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})]$ is odd then the resulting edges are distinct. A graph that accepts a mean labeling is known as mean graph. It was extended to root square mean labeling [7], cube root cube mean labeling [3], etc. Radhika and Vijayan [6] defined a new labeling namely super cube root cube mean labeling. Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, \mathrm{p}+\mathrm{q}\}$ be an one to one function. For a vertex labeling f, the induced edge labeling f^{*}, is defined by f $*(\mathrm{e})=\left\lfloor\sqrt[3]{\frac{f(u)^{3}+f(v)^{3}}{2}}\right\rfloor$ or $\left\lceil\sqrt[3]{\frac{f(u)^{3}+f(v)^{3}}{2}}\right\rceil$. Then f is known as a super cube root cube mean labeling if $f(\mathrm{~V}(\mathrm{G})) \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\right\}=$ $\{1,2,3, \ldots, \mathrm{p}+\mathrm{q}\}$. If such labeling exists, then G is a super cube root cube mean graph. Motivated by the concept of super cube root cube mean labeling, Princy Kala [4] introduced a new labeling called k-super cube root cube mean labeling. In this paper, I prove that $\mathrm{T}_{n} \odot \mathrm{~K}_{1}, \mathrm{~A}\left(\mathrm{~T}_{n}\right) \odot \mathrm{K}_{1}$, $\mathrm{A}\left(\mathrm{T}_{n}\right) \odot 2 \mathrm{~K}_{1}, \mathrm{~A}\left(\mathrm{Q}_{n}\right) \odot \mathrm{K}_{1}, \mathrm{P}_{n} \odot \mathrm{~K}_{1,2}$ and $\mathrm{P}_{n} \odot \mathrm{~K}_{1,3}$ are k-super cube root cube mean graph. Consider a graph G with $\mathrm{p}=|V(G)|$ and $q=E(G)$ and $f: V(G) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ be an one-to-one function. For a vertex labeling f the induced edge labeling f^{*}, is defined by $f^{*}(\mathrm{e})$ $=\left\lfloor\sqrt[3]{\frac{f(u)^{3}+f(v)^{3}}{2}}\right\rfloor$ or $\left\lceil\sqrt[3]{\frac{f(u)^{3}+f(v)^{3}}{2}}\right\rceil$ for all $\mathrm{e}=\mathrm{uv} \in E(G)$ is bijective. If $\mathrm{f}(\mathrm{V}(\mathrm{G})) \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$, then f is said to be a k-super cube root cube mean labeling. If such a labeling exists, then G is a k-super cube root cube mean graph. Throughout this paper, assumed that k is an integer and ≥ 1.

2. Preliminaries

Definition 2.1. The triangular snake graph is obtained from a path u_{1}, u_{2}, \ldots, u_{n} by joining u_{i} and u_{i+1} to a new vertex $v_{i}, 1 \leq i \leq n-1$.

Definition 2.2. To construct an alternate triangular snake graph $A\left(T_{n}\right)$, we have to join u_{i} and u_{i+1} (alternately) from a path with vertices u_{1}, u_{2}, \ldots, u_{n} to a vertex v_{j}, for $1 \leq i \leq n-1 \& 1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor$.

Definition 2.3. An alternate quadrilateral snake graph $A\left(Q_{n}\right)$ is obtained from a path $v_{1}, v_{2}, \ldots, v_{n}$ by joining v_{i} and v_{i+1} (alternately) to the vertices x_{j}, y_{j} respectively then joining x_{j} and y_{j}, for $1 \leq i \leq n-1 \& 1 \leq j \leq$ $\left\lfloor\frac{n}{2}\right\rfloor$.

Definition 2.4. The corona of two graphs G and H is formed by taking one copy of G and $|V(G)|$ copies of H, where the $j^{\text {th }}$ vertex of G is adjacent to every vertex in the $j^{\text {th }}$ copy of H.

3. Main Results

Theorem 3.1. The graph $T_{n} \odot K_{1}$ is a k-super cube root cube mean graph.

Proof. Let $G=T_{n} \odot K_{1}$
Let $V(G)=\left\{u_{i}, u_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i}, v_{i}^{\prime},: 1 \leq i \leq n-1\right\}$ and $E(G)=\left\{v_{i} v_{i}^{\prime}, u_{i} v_{i}, u_{i} u_{i+1}, u_{i+1} v_{i}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} u_{i}^{\prime}, 1 \leq i \leq n\right\}$.
Here $p=|V(G)|=4 n-2$ and $q=|E(G)|=5 n-4$
Hence $p+q=9 n-6$.
Now define a function
$f: V(G) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$f\left(u_{i}\right)=\mathrm{k}+9 \mathrm{i}-7,1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \neq 2$
$f\left(u_{2}\right)=\left\{\begin{array}{l}k+9, k=1,2,3,4,5 ; \\ k+11, \text { otherwise } .\end{array}\right.$
$f\left(v_{i}\right)=\mathrm{k}+9 \mathrm{i}-5,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$f\left(u_{i}^{\prime}\right)=\mathrm{k}+9 \mathrm{i}-9,1 \leq \mathrm{i} \leq n$ and $i \neq 2$
$f\left(u_{2}^{\prime}\right)=\left\{\begin{array}{l}k+11, k=1,2,3,4,5 ; \\ k+9, \text { otherwise } .\end{array}\right.$
$f\left(v_{i}^{\prime}\right)=\mathrm{k}+9 \mathrm{i}-3,1 \leq \mathrm{i} \leq \mathrm{n}-1$
Then the edge labels are
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{u}_{i+1}\right)=\mathrm{k}+9 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{u}_{i}^{\prime}\right)=\mathrm{k}+9 \mathrm{i}-8,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{v}_{i}\right)=\mathrm{k}+9 \mathrm{i}-6,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{i+1} \mathrm{v}_{i}\right)=\mathrm{k}+9 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{i} \mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+9 \mathrm{i}-4,1 \leq \mathrm{i} \leq \mathrm{n}-1$
Clearly $f[\mathrm{~V}(\mathrm{G})] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.

Hence $\mathrm{T}_{n} \odot \mathrm{~K}_{1}$ is a k-super cube root cube mean graph.
An example of 5 -super cube root cube mean labeling of $\mathrm{T}_{4} \odot \mathrm{~K}_{1}$ is shown in Figure 1.

Figure 1: 5-super cube root cube mean labeling of $\mathrm{T}_{4} \odot \mathrm{~K}_{1}$

Theorem 3.2. The graph $A\left(T_{n}\right) \odot K_{1}$ is a k-super cube root cube mean graph.

Proof. Let $\mathrm{G}=\mathrm{A}\left(\mathrm{T}_{n}\right) \odot \mathrm{K}_{1}$
Here consider two cases.

Case 1: The triangle starts from u_{1}.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{i}, \mathrm{u}_{i}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{i}, \mathrm{v}_{i}^{\prime}: 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{i} \mathrm{u}_{i+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{u}_{2 i-1} \mathrm{v}_{i}, \mathrm{u}_{2 i} \mathrm{v}_{i}, \mathrm{v}_{i} \mathrm{v}_{i}^{\prime}: 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup$ $\left\{\mathrm{u}_{i} \mathrm{u}_{i}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
here, $\mathrm{p}=|V(G)|=\left\{\begin{array}{l}3 n, \text { for } n \text { is even } \\ 3 n-1, \text { for } n \text { is odd. }\end{array}\right.$ and
$\mathrm{q}=|E(G)|=\left\{\begin{array}{l}\frac{7 n-2}{2}, \text { for } n \text { is even } \\ \frac{7 n-5}{2}, \text { for } n \text { is odd. }\end{array}\right.$

Therefore $\mathrm{p}+\mathrm{q}= \begin{cases}\frac{13 n-2}{2}, & \text { for } n \text { is even } \\ \frac{13 n-7}{2}, & \text { for } n \text { is odd. }\end{cases}$
Now define a function
$\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$\mathrm{f}\left(\mathrm{u}_{2 i-1}\right)=\mathrm{k}+13 \mathrm{i}-11,1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}\left(\mathrm{u}_{2}\right)=\left\{\begin{array}{l}k+7, k=1,2 ; \\ k+8, \text { otherwise } .\end{array}\right.$
$\mathrm{f}\left(\mathrm{u}_{2 i}\right)=\mathrm{k}+13 \mathrm{i}-5,2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+13 \mathrm{i}-9,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+13 \mathrm{i}-4, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{u}_{2 i-1}^{\prime}\right)=\mathrm{k}+13 \mathrm{i}-13,1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}\left(\mathrm{u}_{2 i}^{\prime}\right)=\mathrm{k}+13 \mathrm{i}-2, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Then the edge labels are
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+13 \mathrm{i}-8, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+13 \mathrm{i}-1, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{v}_{i}\right)=\mathrm{k}+13 \mathrm{i}-10,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{v}_{i}\right)=\mathrm{k}+13 \mathrm{i}-7,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{1}^{\prime}\right)=\left\{\begin{array}{l}k+8, \\ k=1,2 ; \\ k+7, \\ \text { otherwise } .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{v}_{i} \mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+13 \mathrm{i}-6, \quad 2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i-1}^{\prime}\right)=\mathrm{k}+13 \mathrm{i}-12,1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i}^{\prime}\right)=\mathrm{k}+13 \mathrm{i}-3, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Clearly $\mathrm{f}[\mathrm{V}(\mathrm{G})] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.
An example of 2-super cube root cube mean labeling of $\mathrm{A}\left(\mathrm{T}_{6}\right) \odot \mathrm{K}_{1}$ [Triangle
starts from u_{1}] is shown in Figure 2.

Figure 2: 2-super cube root cube mean labeling of $\mathrm{A}\left(\mathrm{T}_{6}\right) \odot \mathrm{K}_{1}$ [Triangle starts from u_{1}]

Case 2: The triangle starts from u_{2}.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{i}, \mathrm{u}_{i}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{i}, \mathrm{v}_{i}^{\prime}: 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{i} \mathrm{u}_{i+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{u}_{2 i} \mathrm{v}_{i}, \mathrm{u}_{2 i+1} \mathrm{v}_{i}, \mathrm{v}_{i} \mathrm{v}_{i}^{\prime}: 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil\right.$ $\} \cup\left\{\mathrm{u}_{i} \mathrm{u}_{i}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
here $\mathrm{p}=|V(G)|=\left\{\begin{array}{l}3 n-2, \text { for } n \text { is even } \\ 3 n-1, \text { for } n \text { is odd. }\end{array}\right.$ and
$\mathrm{q}=|E(G)|=\left\{\begin{array}{l}\frac{7 n-8}{2}, \text { for } n \text { is even } \\ \frac{7 n-5}{2}, \text { for } n \text { is odd. }\end{array}\right.$
Therefore $\mathrm{p}+\mathrm{q}=\left\{\begin{array}{l}\frac{13 n-12}{2}, \text { for } n \text { is even } \\ \frac{13 n-7}{2}, \text { for } n \text { is odd. }\end{array}\right.$
Now define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$\mathrm{f}\left(\mathrm{u}_{1}\right)=\mathrm{k}$, for all k
$\mathrm{f}\left(\mathrm{u}_{2 i-1}\right)=\mathrm{k}+13 \mathrm{i}-14,2 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}\left(\mathrm{u}_{2 i}\right)=\mathrm{k}+13 \mathrm{i}-7, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+13 \mathrm{i}-5, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}\left(\mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+13 \mathrm{i}, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}\left(\mathrm{u}_{2 i-1}^{\prime}\right)=\mathrm{k}+13 \mathrm{i}-11,1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}\left(\mathrm{u}_{2}^{\prime}\right)=\left\{\begin{array}{l}k+3, k=1,2,3,4 ; \\ k+4, \text { otherwise. }\end{array}\right.$
$\mathrm{f}\left(\mathrm{u}_{2 i}^{\prime}\right)=\mathrm{k}+13 \mathrm{i}-9,2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Then the edge labels are
$\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=\left\{\begin{array}{l}k+4, k=1,2,3,4 ; \\ k+3, \text { otherwise } .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+13 \mathrm{i}-10,2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+13 \mathrm{i}-4, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{v}_{i}\right)=\mathrm{k}+13 \mathrm{i}-6,1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i+1} \mathrm{v}_{i}\right)=\mathrm{k}+13 \mathrm{i}-3,1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{v}_{i} \mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+13 \mathrm{i}-2, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i-1}^{\prime}\right)=\mathrm{k}+13 \mathrm{i}-12,1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i}^{\prime}\right)=\mathrm{k}+13 \mathrm{i}-8, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Clearly $f[V(G)] \cup\left\{f^{*}(e): e \in E(G)\right\}=\{k, k+1, k+2, \ldots, p+q+k-1\}$.

An example of 2-super cube root cube mean labeling of $\mathrm{A}\left(\mathrm{T}_{7}\right) \odot \mathrm{K}_{1}$ [Triangle starts from u_{2}] is shown in Figure 3.

Figure 3: 2-super cube root cube mean labeling of $\mathrm{A}\left(\mathrm{T}_{7}\right) \odot \mathrm{K}_{1}$ [Triangle starts from u_{2}]

From the above cases, $\mathrm{A}\left(\mathrm{T}_{n}\right) \odot \mathrm{K}_{1}$ is a k-super cube root cube mean graph.

Theorem 3.3. The graph $A\left(T_{n}\right) \odot 2 K_{1}$ is a k-super cube root cube mean graph.

Proof. Let $\mathrm{G}=\mathrm{A}\left(\mathrm{T}_{n}\right) \odot 2 \mathrm{~K}_{1}$
Here consider two cases.
Case 1: The triangle starts from u_{1}.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{i}, \mathrm{u}_{i}^{\prime}, \mathrm{u}_{i}^{\prime \prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{i}, \mathrm{v}_{i}^{\prime}, \mathrm{v}_{i}^{\prime \prime}: 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{i} \mathrm{u}_{i+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{u}_{2 i-1} \mathrm{v}_{i}, \mathrm{u}_{2 i} \mathrm{v}_{i}, \mathrm{v}_{i} \mathrm{v}_{i}^{\prime}, \mathrm{v}_{i} \mathrm{v}_{i}^{\prime \prime}: 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$ $\cup\left\{\mathrm{u}_{i} \mathrm{u}_{i}^{\prime}, \mathrm{u}_{i} \mathrm{u}_{i}^{\prime \prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
Here, $\mathrm{p}=|V(G)|=\left\{\begin{array}{l}\frac{9 n}{2}, \text { for } n \text { is even } \\ \frac{9 n-3}{2}, \text { for } n \text { is odd. }\end{array}\right.$ and
$\mathrm{q}=|E(G)|=\left\{\begin{array}{l}5 n-1, \text { for } n \text { is even } \\ 5 n-3, \text { for } n \text { is odd } .\end{array}\right.$
Therefore $\mathrm{p}+\mathrm{q}= \begin{cases}\frac{19 n-2}{2}, & \text { for } n \text { is even } \\ \frac{19 n-9}{2}, & \text { for } n \text { is odd } .\end{cases}$

Now define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$\mathrm{f}\left(\mathrm{u}_{2 i-1}\right)=\mathrm{k}+19 \mathrm{i}-15,1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}\left(\mathrm{u}_{2}\right)=\left\{\begin{array}{l}k+11, k=1,2,3,4,5,6 ; \\ k+12, \text { otherwise } .\end{array}\right.$
$\mathrm{f}\left(\mathrm{u}_{2 i}\right)=\mathrm{k}+19 \mathrm{i}-7,2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+19 \mathrm{i}-10,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+19 \mathrm{i}-14,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{v}_{i}^{\prime \prime}\right)=\mathrm{k}+19 \mathrm{i}-6, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{u}_{2 i-1}^{\prime}\right)=\mathrm{k}+19 \mathrm{i}-19,1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}\left(\mathrm{u}_{2 i-1}^{\prime \prime}\right)=\mathrm{k}+19 \mathrm{i}-18, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}\left(\mathrm{u}_{2 i}^{\prime}\right)=\mathrm{k}+19 \mathrm{i}-3,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{u}_{2 i}^{\prime \prime}\right)=\mathrm{k}+19 \mathrm{i}-2,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Then the edge labels are
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+19 \mathrm{i}-11,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+19 \mathrm{i}-1, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{v}_{i}\right)=\mathrm{k}+19 \mathrm{i}-13,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{v}_{i}\right)=\mathrm{k}+19 \mathrm{i}-9, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}^{*}\left(\mathrm{v}_{i} \mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+19 \mathrm{i}-12, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{1}^{\prime \prime}\right)=\left\{\begin{array}{l}k+12, k=1,2,3,4,5,6 ; \\ k+11, \text { otherwise. }\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{v}_{i} \mathrm{v}_{i}^{\prime \prime}\right)=\mathrm{k}+19 \mathrm{i}-8, \quad 2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i-1}^{\prime}\right)=\mathrm{k}+19 \mathrm{i}-17, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i-1}^{\prime \prime}\right)=\mathrm{k}+19 \mathrm{i}-16,1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i}^{\prime}\right)=\mathrm{k}+19 \mathrm{i}-5, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i}^{\prime \prime}\right)=\mathrm{k}+19 \mathrm{i}-4, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Clearly $\mathrm{f}[\mathrm{V}(\mathrm{G})] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.
An example of 6 -super cube root cube mean labeling of $\mathrm{A}\left(\mathrm{T}_{6}\right) \odot 2 \mathrm{~K}_{1}$ [Triangle start from u_{2}] is shown in Figure 4.

Figure 4: 6-super cube root cube mean labeling of $\mathrm{A}\left(\mathrm{T}_{6}\right) \odot 2 \mathrm{~K}_{1}[$ Triangle starts from u_{1}]

Case 2: The triangle starts from u_{2}.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{i}, \mathrm{u}_{i}^{\prime}, \mathrm{u}_{i}^{\prime \prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{i}, \quad \mathrm{v}_{i}^{\prime}, \quad \mathrm{v}_{i}^{\prime \prime}: 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil\right.$ $\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{i} \mathrm{u}_{i+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{u}_{2 i} \mathrm{v}_{i}, \quad \mathrm{u}_{2 i+1} \mathrm{v}_{i}, \quad \mathrm{v}_{i} \mathrm{v}_{i}^{\prime}, \quad \mathrm{v}_{i} \mathrm{v}_{i}^{\prime \prime}: 1\right.$ $\left.\leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil\right\} \cup\left\{\mathrm{u}_{i} \mathrm{u}_{i}^{\prime}, \quad \mathrm{u}_{i} \mathrm{u}_{i}^{\prime \prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.

Here $\mathrm{p}=|V(G)|=\left\{\begin{array}{ll}\frac{9 n-6}{2}, & \text { for } n \text { is even } \\ \frac{9 n-3}{2}, & \text { for } n \text { is odd. }\end{array}\right.$ and
$\mathrm{q}=|E(G)|=\left\{\begin{array}{l}5 n-5, \text { for } n \text { is even } \\ 5 n-3, \text { for } n \text { is odd. }\end{array}\right.$
Therefore $\mathrm{p}+\mathrm{q}=\left\{\begin{array}{l}\frac{19 n-16}{2}, \text { for } n \text { is even } \\ \frac{19 n-9}{2}, \text { for } n \text { is odd. }\end{array}\right.$
Now define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$f\left(u_{2 i-1}\right)=\mathrm{k}+19 \mathrm{i}-17,1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.

$$
\left.\begin{array}{l}
f\left(u_{2}\right)=\left\{\begin{array}{l}
k+8, k=1,2,3,4,5,6,7,8 \\
k+10, \text { otherwise }
\end{array}\right. \\
f\left(u_{2 i}\right)=\mathrm{k}+19 \mathrm{i}-9, \quad 2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rceil \\
f\left(v_{i}\right)=\mathrm{k}+19 \mathrm{i}-5, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil \\
f\left(v_{i}^{\prime}\right)=\mathrm{k}+19 \mathrm{i}-8, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil \\
f\left(v_{i}^{\prime \prime}\right)=\mathrm{k}+19 \mathrm{i}-2, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil \\
f\left(u_{2 i-1}^{\prime}\right)=\mathrm{k}+19 \mathrm{i}-19, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(u_{2 i-1}^{\prime \prime}\right)=\mathrm{k}+19 \mathrm{i}-15, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(u_{2 i}^{\prime}\right)=\mathrm{k}+19 \mathrm{i}-14, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rceil
\end{array}\right\} \begin{aligned}
& f\left(u_{2}^{\prime \prime}\right)=\left\{\begin{array}{l}
k+10, k=1,2,3,4,5,6,7,8 \\
k+8, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
f\left(u_{2 i}^{\prime \prime}\right)=\mathrm{k}+19 \mathrm{i}-11, \quad 2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor
$$

Then the edge labels are
$f^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+19 \mathrm{i}-13,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$f^{*}\left(u_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+19 \mathrm{i}-3, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$f^{*}\left(u_{2 i} \mathrm{v}_{i}\right)=\mathrm{k}+19 \mathrm{i}-7, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$f^{*}\left(u_{2 i+1} \mathrm{v}_{i}\right)=\mathrm{k}+19 \mathrm{i}-1, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$f^{*}\left(v_{i} \mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+19 \mathrm{i}-6, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$f^{*}\left(v_{i} \mathrm{v}_{i}^{\prime \prime}\right)=\mathrm{k}+19 \mathrm{i}-4, \quad 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$f^{*}\left(u_{2 i-1} \mathrm{u}_{2 i-1}^{\prime}\right)=\mathrm{k}+19 \mathrm{i}-18, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$f^{*}\left(u_{2 i-1} \mathrm{u}_{2 i-1}^{\prime \prime}\right)=\mathrm{k}+19 \mathrm{i}-16, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$f^{*}\left(u_{2 i} \mathrm{u}_{2 i}^{\prime}\right)=\mathrm{k}+19 \mathrm{i}-12,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$f^{*}\left(u_{2 i} \mathrm{u}_{2 i}^{\prime \prime}\right)=\mathrm{k}+19 \mathrm{i}-10,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.

Clearly $f[\mathrm{~V}(\mathrm{G})] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.

An example of 6 -super cube root cube mean labeling of $\mathrm{A}\left(\mathrm{T}_{5}\right) \odot 2 \mathrm{~K}_{1}$ [Triangle starts from u_{2}] is shown in Figure 5.

Figure 5: 6-super cube root cube mean labeling of $\mathrm{A}\left(\mathrm{T}_{5}\right) \odot 2 \mathrm{~K}_{1}[$ Triangle starts from u_{2}]

From the above cases, $\mathrm{A}\left(\mathrm{T}_{n}\right) \odot 2 \mathrm{~K}_{1}$ is a k-super cube root cube mean graph.

Theorem 3.4. The graph $A\left(Q_{n}\right) \odot K_{1}$ is a k-super cube root cube mean graph.

Proof. Let $\mathrm{G}=\mathrm{A}\left(\mathrm{Q}_{n}\right) \odot \mathrm{K}_{1}$
Here consider two cases.

Case 1: Quadrilateral starts from u_{1}.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{i}, \mathrm{u}_{i}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{i}, \mathrm{w}_{i}, \mathrm{v}_{i}^{\prime}, \mathrm{w}_{i}^{\prime}: 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{i} \mathrm{u}_{i+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{u}_{2 i-1} \mathrm{v}_{i}, \mathrm{u}_{2 i} \mathrm{w}_{i}, \mathrm{v}_{i} \mathrm{v}_{i}^{\prime}, \mathrm{v}_{i} \mathrm{w}_{i}, \mathrm{w}_{i} \mathrm{w}_{i}^{\prime}: 1 \leq \mathrm{i}\right.$ $\left.\leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{\mathrm{u}_{i} \mathrm{u}_{i}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
here $\mathrm{p}=\left\{\begin{array}{l}4 n, \text { for } n \text { is even } \\ 4 n-2, \text { for } n \text { is odd. }\end{array} \quad \& \mathrm{q}=\left\{\begin{array}{l}\frac{9 n-2}{2}, \text { for } n \text { is even } \\ \frac{9 n-7}{2}, \text { for } n \text { is odd } .\end{array}\right.\right.$

Therefore $\mathrm{p}+\mathrm{q}=\left\{\begin{array}{l}\frac{17 n-2}{2}, \text { for } n \text { is even } \\ \frac{17 n-11}{2}, \text { for } n \text { is odd. }\end{array}\right.$
Now define a function
$\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$\mathrm{f}\left(\mathrm{u}_{2 i-1}\right)=\mathrm{k}+17 \mathrm{i}-15,1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}\left(\mathrm{u}_{2}\right)=\left\{\begin{array}{l}k+12, k=1 \\ k+13, \text { otherwise } .\end{array}\right.$
$\mathrm{f}\left(\mathrm{u}_{2 i}\right)=\mathrm{k}+17 \mathrm{i}-4,2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{w}_{1}\right)=\left\{\begin{array}{l}k+8, k=1,2,3, \ldots, 11 ; \\ k+9, \text { otherwise } .\end{array}\right.$
$\mathrm{f}\left(\mathrm{w}_{i}\right)=\mathrm{k}+17 \mathrm{i}-8, \quad 2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+17 \mathrm{i}-11,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-14, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{w}_{1}^{\prime}\right)=\left\{\begin{array}{l}k+13, k=1 ; \\ k+12, \text { otherwise } .\end{array}\right.$
$\mathrm{f}\left(\mathrm{w}_{i}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-5, \quad 2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{u}_{2 i-1}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-17,1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}\left(\mathrm{u}_{2 i}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-2,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Then the edge labels are
$\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=\left\{\begin{array}{l}k+9, k=1,2,3, \ldots, 11 \\ k+8, \text { otherwise } .\end{array}\right.$
$f^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+17 \mathrm{i}-9, \quad 2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$f^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+17 \mathrm{i}-1, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$f^{*}\left(\mathrm{u}_{2 i-1} \mathrm{v}_{i}\right)=\mathrm{k}+17 \mathrm{i}-13,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$f^{*}\left(\mathrm{u}_{2 i} \mathrm{w}_{i}\right)=\mathrm{k}+17 \mathrm{i}-6, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$f^{*}\left(\mathrm{v}_{i} \mathrm{w}_{i}\right)=\mathrm{k}+17 \mathrm{i}-10,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$f^{*}\left(\mathrm{v}_{i} \mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-12, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$f^{*}\left(\mathrm{w}_{i} \mathrm{w}_{i}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-7,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$f^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i-1}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-16, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$f^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-3, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Clearly $\mathrm{f}[\mathrm{V}(\mathrm{G})] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.

An example of 2-super cube root cube mean labeling of $\mathrm{A}\left(\mathrm{Q}_{6}\right) \odot \mathrm{K}_{1}$ [Quadrilateral starts from u_{1}] is shown in Figure 6.

Figure 6: 2-super cube root cube mean labeling of $A\left(Q_{6}\right) \odot$

$$
\mathrm{K}_{1}\left[\text { Quadrilateral starts from } \mathrm{u}_{1}\right]
$$

Case 2: Quadrilateral starts from u_{2}.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{i}, \quad \mathrm{u}_{i}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{i}, \quad \mathrm{w}_{i}, \quad \mathrm{v}_{i}^{\prime}, \quad \mathrm{w}_{i}^{\prime}: 1 \leq \mathrm{i} \leq\right.$ $\left.\left\lceil\frac{n-2}{2}\right\rceil\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{i} \mathrm{u}_{i+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{u}_{2 i} \mathrm{v}_{i}, \mathrm{u}_{2 i+1} \mathrm{w}_{i}, \mathrm{v}_{i} \mathrm{v}_{i}^{\prime}, \mathrm{v}_{i} \mathrm{w}_{i}\right.$,
$\left.\mathrm{w}_{i} \mathrm{w}_{i}^{\prime}: 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil\right\} \cup\left\{\mathrm{u}_{i} \mathrm{u}_{i}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
here $\mathrm{p}=\left\{\begin{array}{l}4 n-4, \text { for } n \text { is even } \\ 4 n-2, \text { for } n \text { is odd. }\end{array} \quad \& \mathrm{q}=\left\{\begin{array}{l}\frac{9 n-12}{2}, \text { for } n \text { is even } \\ \frac{9 n-7}{2}, \text { for } n \text { is is odd. }\end{array}\right.\right.$
Therefore $\mathrm{p}+\mathrm{q}= \begin{cases}\frac{17 n-20}{2}, & \text { for } n \text { is even } \\ \frac{17 n-11}{2}, & \text { for } n \text { is odd. }\end{cases}$
Now define a function
$\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by $\mathrm{f}\left(\mathrm{u}_{2 i-1}\right)=\mathrm{k}+17 \mathrm{i}-17,1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}\left(\mathrm{u}_{2 i}\right)=\mathrm{k}+17 \mathrm{i}-11,1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+17 \mathrm{i}-7, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}\left(\mathrm{w}_{1}\right)=\left\{\begin{array}{l}k+12, k=1,2, \ldots, 7 \\ k+13, \text { otherwise } .\end{array}\right.$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{w}_{i}\right)=\mathrm{k}+17 \mathrm{i}-4, \quad 2 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil \\
& \mathrm{f}\left(\mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-10, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil \\
& \mathrm{f}\left(\mathrm{w}_{i}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-1, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil \\
& \mathrm{f}\left(\mathrm{u}_{2 i-1}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-15, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil \\
& \mathrm{f}\left(\mathrm{u}_{2}^{\prime}\right)=\left\{\begin{array}{l}
k+3, k=1,2,3,4 \\
k+4, \text { otherwise }
\end{array}\right. \\
& \mathrm{f}\left(\mathrm{u}_{2 i}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-13, \quad 2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

Then the edge labels are
$\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=\left\{\begin{array}{l}k+4, k=1,2,3,4 ; \\ k+3, \text { otherwise } .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+17 \mathrm{i}-14,2 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2} \mathrm{u}_{3}\right)=\left\{\begin{array}{l}k+13, k=1,2,3, \ldots, 7 ; \\ k+12, \text { otherwise } .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+17 \mathrm{i}-5, \quad 2 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{v}_{\mathrm{i}}\right)=\mathrm{k}+17 \mathrm{i}-9, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i+1} \mathrm{w}_{i}\right)=\mathrm{k}+17 \mathrm{i}-2, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{v}_{i} \mathrm{w}_{i}\right)=\mathrm{k}+17 \mathrm{i}-6, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{v}_{i} \mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-8, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{w}_{i} \mathrm{w}_{i}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-3, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i-1}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-16, \quad 1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil$.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i}^{\prime}\right)=\mathrm{k}+17 \mathrm{i}-12, \quad 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Clearly $f[\mathrm{~V}(\mathrm{G})] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.

An example of 2-super cube root cube mean labeling of $\mathrm{A}\left(\mathrm{Q}_{5}\right) \odot \mathrm{K}_{1}$ [Quadrilateral starts from u_{2}] is shown in Figure 7.

Figure 7: 2-super cube root cube mean labeling of $A\left(Q_{5}\right) \odot$ K_{1} [Quadrilateral starts from u_{2}]

From the above cases, $\mathrm{A}\left(\mathrm{Q}_{n}\right) \odot \mathrm{K}_{1}$ is a k-super cube root cube mean graph.

Theorem 3.5. The graph $P_{n} \odot K_{1,2}$ is a k-super cube root cube mean graph.

Proof. Let $\mathrm{G}=\mathrm{P}_{n} \odot \mathrm{~K}_{1,2}$
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{i}, \mathrm{v}_{i}, \mathrm{w}_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{i} \mathrm{v}_{i}, \mathrm{u}_{i} \mathrm{w}_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{u}_{i} \mathrm{u}_{i+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$
Here $p=|V(G)|=3 n$ and $q=|E(G)|=3 n-1$
Hence $p+q=6 n-1$.
Now define a function
$f: V(G) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$f\left(u_{i}\right)=k+6 i-4,1 \leq i \leq n$
$f\left(v_{i}\right)=k+6 i-6,1 \leq i \leq n$ and $i \neq 2$
$f\left(v_{2}\right)=\left\{\begin{array}{l}k+5, k=1,2 ; \\ \mathrm{k}+6, \text { otherwise. }\end{array}\right.$
$f\left(w_{i}\right)=k+6 i-2,1 \leq i \leq n$

Then the edge labels are
$f^{*}\left(\mathrm{u}_{i} \mathrm{v}_{i}\right)=\mathrm{k}+6 \mathrm{i}-5,1 \leq \mathrm{i} \leq \mathrm{n}$
$f^{*}\left(\mathrm{u}_{i} \mathrm{w}_{i}\right)=\mathrm{k}+6 \mathrm{i}-3,1 \leq \mathrm{i} \leq \mathrm{n}$
$f^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=\left\{\begin{array}{l}k+6, k=1,2 ; \\ k+5, \text { otherwise. }\end{array}\right.$
$f^{*}\left(u_{i} u_{i+1}\right)=k+6 i-1,2 \leq i \leq n-1$
Hence $f[V(G)] \cup\left\{f^{*}(\mathrm{e}): \mathrm{e} \in E(G)\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.
Therefore $P_{n} \odot K_{1,2}$ is a k-super cube root cube mean graph.
An example of 12 -super cube root cube mean labeling of $P_{3} \odot K_{1,2}$ is shown in Figure 8.

Figure 8: 12-super cube root cube mean labeling of $\mathrm{P}_{3} \odot \mathrm{~K}_{1,2}$

Theorem 3.6. The graph $P_{n} \odot K_{1,3}$ is a k-super cube root cube mean graph.

Proof. Let $G=P_{n} \odot K_{1,3}$
Let $V(G)=\left\{u_{i}, v_{i}, w_{i}, s_{i}, 1 \leq i \leq n\right\}$ and
$E(G)=\left\{u_{i} v_{i}, u_{i} w_{i}, u_{i} s_{i}, 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}, 1 \leq i \leq n-1\right\}$
Here $p=|V(G)|=4 n$ and $q=|E(G)|=4 n-1$
Hence $p+q=8 n-1$.
Now define a function
$f: V(G) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$f\left(u_{i}\right)=k+8 i-4,1 \leq i \leq n$
$f\left(v_{1}\right)=k$, for all k
$f\left(v_{i}\right)=k+8 i-9,2 \leq i \leq n$
$f\left(w_{i}\right)=k+8 i-7,1 \leq i \leq n$ and $i \neq 2$
$f\left(w_{2}\right)=\left\{\begin{array}{l}k+8, k=1,2,3,4,5,6 ; \\ k+9, \text { otherwise } .\end{array}\right.$
$f\left(s_{i}\right)=k+8 i-2,1 \leq i \leq n$.
Then the edge labels are
$f^{*}\left(u_{1} u_{2}\right)=\left\{\begin{array}{l}k+9, k=1,2,3,4,5,6 ; \\ k+8, \text { otherwise } .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{u}_{i+1}\right)=\mathrm{k}+8 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{v}_{i}\right)=\mathrm{k}+8 \mathrm{i}-6,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{w}_{i}\right)=\mathrm{k}+8 \mathrm{i}-5,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{~s}_{i}\right)=\mathrm{k}+8 \mathrm{i}-3,1 \leq \mathrm{i} \leq \mathrm{n}$.
Hence $\mathrm{f}[\mathrm{V}(\mathrm{G})] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.
Therefore $\mathrm{P}_{n} \odot \mathrm{~K}_{1,3}$ is a k-super cube root cube mean graph.
An example of 5 -super cube root cube mean labeling of $\mathrm{P}_{3} \odot \mathrm{~K}_{1,3}$ is shown in Figure 9.

Figure 9: 5-super cube root cube mean labeling of $\mathrm{P}_{3} \odot \mathrm{~K}_{1,3}$

References

[1] J.A Gallian, "A dynamic survey of graph labeling", The Electronic Journal of Combinatorics, 2019, \# DS6. [On line]. A vailable: https:/ / bit.ly/ 2A ojJ 92
[2] F. H arary, G raph Theory. N arosa publishing H ouse Reading, N ew Delhi, 1988.
[3] S. K ulandhai Therese and K. Romila, "Cube root Cube M ean Iabeling of Graphs", International Journal of M athematics Trends and Technology, vol. 65, no. 2, 2019. [On line]. A vailable: https:/ / bit.ly/ 30G y1wq
[4] V. Princy K ala, "K -Super Cube root cube mean labeling of graphs", Proyecciones (Antofagasta), vol. 40, no. 5, pp. 1097-1116, 2021. doi: 10.22199/ issn.0717-6279-4258
[5] S. Somasundaram and R. Ponraj, "M ean labeling of graphs", National A cademy of Science Letters, vol. 26, pp. 210-213, 2013.
[6] V. S. Radhika and A. Vijayan, "Super Cube root Cube M ean labeling of G raphs", J ournal of Science and T echnology, vol. 5, pp. 17-24, 2020.
[7] S. Sandhya, S. Somasundaram and S. A nusa, "Some M ore Results on R oot Square mean Graphs", J ournal of M athematics Research, vol. 7, no. 1, pp. 72-81, 2015. [On line]. A vailable: https:/ / bit.ly/ 30DTCpd

V. Princy Kala

Assistant Professor, Department of Mathematics, Holy Cross College (Autonomous), Nagercoil-629 004, TN, India
e-mail: princykala@holycrossngl.edu.in https://orcid.org/0000-0001-6264-1100

