Proyecciones Journal of Mathematics Vol. 41, N^o 4, pp. 903-921, August 2022. Universidad Católica del Norte Antofagasta - Chile

doi 10.22199/issn.0717-6279-5200

k-super cube root cube mean labeling of some corona graphs

V. Princy Kala Holy Cross College (Autonomous), India Received : October 2021. Accepted : March 2022

Abstract

Let G be a graph with |V(G)| = p and |E(G)| = q and $f: V(G) \rightarrow \{k, k+1, k+2, \dots, p+q+k-1\}$ be an one-to-one function. The induced edge labeling f^* , for a vertex labeling f is defined by

$$f^{*}(e) = \left\lfloor \sqrt[3]{\frac{f(u)^{3} + f(v)^{3}}{2}} \right\rfloor \quad or \quad \left\lceil \sqrt[3]{\frac{f(u)^{3} + f(v)^{3}}{2}} \right\rceil$$

for all $e = uv \in E(G)$ is bijective. If $f(V(G)) \cup \{f^*(e) : e \in E(G)\} = \{k, k+1, k+2, \ldots, p+q+k-1\}$, then f is known as a k-super cube root cube mean labeling. If such labeling exists, then G is a k-super cube root cube mean graph. In this paper, I prove that $T_n \odot K_1, A(T_n) \odot K_1, A(T_n) \odot 2K_1, A(Q_n) \odot K_1, P_n \odot K_{1,2}$ and $P_n \odot K_{1,3}$ are k-super cube root cube mean graphs.

Keywords: K-Super cube root cube mean labeling, Alternate snake graph, $A(T_n) \odot K_1$, $A(T_n) \odot 2K_1$, $T_n \odot K_1$, $A(Q_n) \odot K_1$, $P_n \odot K_{1,3}$.

MSC (2020): 05C78.

1. Introduction

In this paper, all graphs are simple, finite, and undirected. Labeling of a graph is an assignment of integers to the vertices or edges or both subject to certain conditions. Several types of graph labeling and an extensive survey are available in [1]. Standard notations of F.Harary [2] are followed here. Somasundaram and Ponraj [5] introduced mean labeling. Let G be a graph with V(G) = p and E(G) = q. A mean labeling f is an injection from V to the set $\{0, 1, 2, \ldots, q\}$ such that every edge uv, is labelled with $\frac{[f(u) + f(v)]}{2}$ if [f(u) + f(v)] is even and $\frac{[f(u) + f(v)] + 1}{2}$ if [f(u) + f(v)] is odd then the resulting edges are distinct. A graph that accepts a mean labeling is known as mean graph. It was extended to root square mean labeling [7], cube root cube mean labeling [3], etc. Radhika and Vijayan [6] defined a new labeling namely super cube root cube mean labeling. Let $f : V(G) \rightarrow \{1, 2, 3, \dots, p+q\}$ be an one to one function. For a vertex labeling f, the induced edge labeling f^* , is defined $\left\lfloor \sqrt[3]{\frac{f(u)^3 + f(v)^3}{2}} \right| \text{ or } \left\lceil \sqrt[3]{\frac{f(u)^3 + f(v)^3}{2}} \right\rceil.$ Then f is known as a by f $^{*}(e) =$ super cube root cube mean labeling if $f(V(G)) \cup \{f^*(e) : e \in E(G)\} =$ $\{1, 2, 3, \ldots, p+q\}$. If such labeling exists, then G is a super cube root cube mean graph. Motivated by the concept of super cube root cube mean labeling, Princy Kala 4 introduced a new labeling called k-super cube root cube mean labeling. In this paper, I prove that $T_n \odot K_1$, $A(T_n) \odot K_1$, $A(T_n) \odot 2K_1, A(Q_n) \odot K_1, P_n \odot K_{1,2}$ and $P_n \odot K_{1,3}$ are k-super cube root cube mean graph. Consider a graph G with p = |V(G)| and q = E(G) and $f: V(G) \rightarrow \{k, k+1, k+2, \dots, p+q+k-1\}$ be an one-to-one function. For a vertex labeling f the induced edge labeling f^* , is defined by $f^*(e)$ $= \left\lfloor \sqrt[3]{\frac{f(u)^3 + f(v)^3}{2}} \right] \text{ or } \left\lceil \sqrt[3]{\frac{f(u)^3 + f(v)^3}{2}} \right\rceil \text{ for all } e = uv \in E(G) \text{ is bijective. If } f(V(G)) \cup \{f^*(e) : e \in E(G)\} = \{k, k+1, k+2, \dots, p+q+k-1\}, \text{ then } \}$ f is said to be a k-super cube root cube mean labeling. If such a labeling exists, then G is a k-super cube root cube mean graph. Throughout this paper, assumed that k is an integer and ≥ 1 .

2. Preliminaries

Definition 2.1. The triangular snake graph is obtained from a path u_1 , u_2 , ..., u_n by joining u_i and u_{i+1} to a new vertex v_i , $1 \le i \le n - 1$.

Definition 2.2. To construct an alternate triangular snake graph $A(T_n)$, we have to join u_i and u_{i+1} (alternately) from a path with vertices u_1, u_2, \ldots, u_n to a vertex v_j , for $1 \le i \le n-1$ & $1 \le j \le \lfloor \frac{n}{2} \rfloor$.

Definition 2.3. An alternate quadrilateral snake graph $A(Q_n)$ is obtained from a path v_1, v_2, \ldots, v_n by joining v_i and v_{i+1} (alternately) to the vertices x_j, y_j respectively then joining x_j and y_j , for $1 \le i \le n-1$ & $1 \le j \le \lfloor \frac{n}{2} \rfloor$.

Definition 2.4. The corona of two graphs G and H is formed by taking one copy of G and |V(G)| copies of H, where the j^{th} vertex of G is adjacent to every vertex in the j^{th} copy of H.

3. Main Results

Theorem 3.1. The graph $T_n \odot K_1$ is a k-super cube root cube mean graph.

Proof. Let $G = T_n \odot K_1$ Let $V(G) = \{u_i, u'_i: 1 \le i \le n\} \cup \{v_i, v'_i: 1 \le i \le n-1\}$ and $E(G) = \{v_i \; v'_i, \, u_i v_i, \, u_i u_{i+1}, \, u_{i+1} v_i : 1 \le i \le n-1\} \cup \{u_i u'_i, \, 1 \le i \le n\}.$ Here p = |V(G)| = 4n - 2 and q = |E(G)| = 5n - 4Hence p + q = 9n - 6. Now define a function $f: V(G) \to \{k, k+1, k+2, \dots, p+q+k-1\}$ by $f(u_i) = \mathbf{k} + 9\mathbf{i} - 7, 1 \leq \mathbf{i} \leq \mathbf{n}$ and $\mathbf{i} \neq 2$ $f(u_2) = \begin{cases} k+9, \ k=1,2,3,4,5;\\ k+11, \ otherwise. \end{cases}$ $f(v_i) = k + 9i - 5, 1 \le i \le n-1$ $f(u'_i) = \mathbf{k} + 9\mathbf{i} - 9, 1 \le \mathbf{i} \le n \text{ and } i \ne 2$ $f(u'_2) = \begin{cases} k+11, \ k = 1, 2, 3, 4, 5; \\ k+9, \ otherwise. \end{cases}$ $f(v'_i) = k + 9i - 3, 1 \le i \le n-1$ Then the edge labels are $f^*(u_i u_{i+1}) = k + 9i - 2, 1 \le i \le n-1$ $f^*(u_i u'_i) = k + 9i - 8, 1 \le i \le n$ $f^*(u_i v_i) = k + 9i - 6, 1 \le i \le n-1$ $f^*(u_{i+1}v_i) = k + 9i - 1, 1 \le i \le n-1$ $f^*(v_i v'_i) = k + 9i - 4, 1 \le i \le n-1$ Clearly $f[V(G)] \cup \{f^*(e) : e \in E(G)\} = \{k, k+1, k+2, \dots, p+q+k-1\}.$ Hence $T_n \odot K_1$ is a k-super cube root cube mean graph. An example of 5-super cube root cube mean labeling of $T_4 \odot K_1$ is shown in Figure 1.

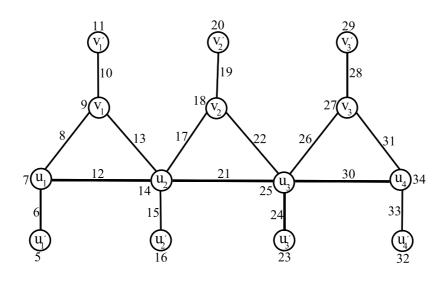


Figure 1: 5-super cube root cube mean labeling of $T_4 \odot K_1$

Theorem 3.2. The graph $A(T_n) \odot K_1$ is a k-super cube root cube mean graph.

Proof. Let $G = A(T_n) \odot K_1$ Here consider two cases.

Case 1: The triangle starts from u_1 . Let $V(G) = \{ u_i, u'_i : 1 \le i \le n \} \cup \{ v_i, v'_i : 1 \le i \le \lfloor \frac{n}{2} \rfloor \}$ and $E(G) = \{ u_i u_{i+1} : 1 \le i \le n-1 \} \cup \{ u_{2i-1}v_i, u_{2i}v_i, v_iv'_i : 1 \le i \le \lfloor \frac{n}{2} \rfloor \} \cup \{ u_i u'_i : 1 \le i \le n \}.$ here, $p = |V(G)| = \begin{cases} 3n, \text{ for } n \text{ is even} \\ 3n-1, \text{ for } n \text{ is odd.} \end{cases}$ and $q = |E(G)| = \begin{cases} \frac{7n-2}{2}, \text{ for } n \text{ is odd.} \end{cases}$ Therefore $p + q = \begin{cases} \frac{13n-2}{2}, & \text{for } n \text{ is even} \\ \frac{13n-7}{2}, & \text{for } n \text{ is odd.} \end{cases}$ Now define a function $f:\,V(G)\rightarrow \{k,\ k+1,\ k+2,\ldots,\ p+q+k-1\ \}$ by $f(u_{2i-1}) = k + 13i - 11, \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$. $f(u_2) = \begin{cases} k+7, \ k = 1, 2; \\ k+8, \ otherwise. \end{cases}$ $f(u_{2i}) = k + 13i - 5, \ 2 \le i \le \lfloor \frac{n}{2} \rfloor.$ $f(v_i) = k + 13i - 9, 1 \le i \le \lfloor \frac{n}{2} \rfloor.$ $f(v'_i) = k + 13i - 4, \ 1 \le i \le \left|\frac{n}{2}\right|.$ $\begin{aligned} \mathbf{f}(\mathbf{u}'_{2i-1}) &= \mathbf{k} + 13\mathbf{i} - 13, \ 1 \leq \mathbf{i} \leq \left\lceil \frac{n}{2} \right\rceil \\ \mathbf{f}(\mathbf{u}'_{2i}) &= \mathbf{k} + 13\mathbf{i} - 2, \ 1 \leq \mathbf{i} \leq \left\lfloor \frac{n}{2} \right\rfloor. \end{aligned}$ Then the edge labels are $f^*(u_{2i-1}u_{2i}) = k + 13i - 8, \ 1 \le i \le \lfloor \frac{n}{2} \rfloor.$ $f^*(u_{2i}u_{2i+1}) = k + 13i - 1, \ 1 \le i \le \left\lceil \frac{n-2}{2} \right\rceil.$ $f^*(u_{2i-1}v_i) = k + 13i - 10, \ 1 \le i \le \lfloor \frac{n}{2} \rfloor.$ $f^{*}(\mathbf{u}_{2i}\mathbf{v}_{i}) = \mathbf{k} + 13\mathbf{i} - 7, \ 1 \le \mathbf{i} \le \lfloor \frac{n}{2} \rfloor.$ $f^{*}(\mathbf{v}_{1}\mathbf{v}_{1}') = \begin{cases} k+8, \ k=1,2; \\ k+7, \ otherwise. \end{cases}$ $\mathbf{f}^*(\mathbf{v}_i\mathbf{v}_i') = \mathbf{k} + 13\mathbf{i} - 6, \ 2 \le \mathbf{i} \le \lfloor \frac{n}{2} \rfloor.$ $f^*(u_{2i-1}u'_{2i-1}) = k + 13i - 12, \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$ $f^*(u_{2i}u'_{2i}) = k + 13i - 3, \ 1 \le i \le \lfloor \frac{n}{2} \rfloor.$ Clearly $f[V(G)] \cup \{f^*(e) : e \in E(G)\} = \{k, k+1, k+2, \dots, p+q+k-1\}.$ An example of 2-super cube root cube mean labeling of $A(T_6) \odot K_1$ [Triangle starts from u_1 is shown in Figure 2.

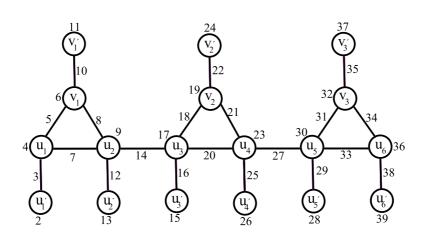


Figure 2: 2-super cube root cube mean labeling of $A(T_6) \odot K_1$ [Triangle starts from u_1]

Case 2: The triangle starts from u₂. Let V(G) = { u_i , u'_i : $1 \le i \le n$ } \cup { v_i , v'_i : $1 \le i \le \left\lceil \frac{n-2}{2} \right\rceil$ } and $E(G) = \{ u_i u_{i+1} : 1 \le i \le n-1 \} \cup \{ u_{2i} v_i, u_{2i+1} v_i, v_i v_i' : 1 \le i \le \left\lceil \frac{n-2}{2} \right\rceil$ $\cup \{ u_i u'_i : 1 \le i \le n \}.$ here $p = |V(G)| = \begin{cases} 3n-2, \text{ for } n \text{ is even} \\ 3n-1, \text{ for } n \text{ is odd.} \end{cases}$ and $q = |E(G)| = \begin{cases} \frac{7n-8}{2}, & \text{for } n \text{ is even} \\ \frac{7n-5}{2}, & \text{for } n \text{ is odd.} \end{cases}$ Therefore $p + q = \begin{cases} \frac{13n-12}{2}, & \text{for } n \text{ is even} \\ \frac{13n-7}{2}, & \text{for } n \text{ is odd.} \end{cases}$ Now define a function f: V(G) \rightarrow {k, k+1, k+2,..., p+q+k-1 } by $f(u_1) = k$, for all k $f(\mathbf{u}_{2i-1}) = \mathbf{k} + 13\mathbf{i} - 14, \ 2 \le \mathbf{i} \le \left\lceil \frac{n}{2} \right\rceil,$ $f(\mathbf{u}_{2i}) = \mathbf{k} + 13\mathbf{i} - 7, \ 1 \le \mathbf{i} \le \left\lfloor \frac{n}{2} \right\rfloor.$

$$f(\mathbf{v}_{i}) = \mathbf{k} + 13\mathbf{i} - 5, \ 1 \le \mathbf{i} \le \left\lceil \frac{n-2}{2} \right\rceil.$$

$$f(\mathbf{v}_{i}') = \mathbf{k} + 13\mathbf{i}, \ 1 \le \mathbf{i} \le \left\lceil \frac{n-2}{2} \right\rceil.$$

$$f(\mathbf{u}_{2i-1}') = \mathbf{k} + 13\mathbf{i} - 11, \ 1 \le \mathbf{i} \le \left\lceil \frac{n}{2} \right\rceil.$$

$$f(\mathbf{u}_{2}') = \begin{cases} k+3, \ k=1, \ 2, \ 3, \ 4; \\ k+4, \ otherwise. \end{cases}$$

$$f(\mathbf{u}_{2i}') = \mathbf{k} + 13\mathbf{i} - 9, \ 2 \le \mathbf{i} \le \left\lfloor \frac{n}{2} \right\rfloor.$$

Then the edge labels are

$$f^{*}(u_{1}u_{2}) = \begin{cases} k+4, \ k=1,2,3,4;\\ k+3, \ otherwise. \end{cases}$$

$$f^{*}(u_{2i-1}u_{2i}) = k + 13i - 10, \ 2 \le i \le \lfloor \frac{n}{2} \rfloor.$$

$$f^{*}(u_{2i}u_{2i+1}) = k + 13i - 4, \ 1 \le i \le \lceil \frac{n-2}{2} \rceil.$$

$$f^{*}(u_{2i}v_{i}) = k + 13i - 6, \ 1 \le i \le \lceil \frac{n-2}{2} \rceil.$$

$$f^{*}(u_{2i+1}v_{i}) = k + 13i - 3, \ 1 \le i \le \lceil \frac{n-2}{2} \rceil.$$

$$f^{*}(v_{i}v'_{i}) = k + 13i - 2, \ 1 \le i \le \lceil \frac{n-2}{2} \rceil.$$

$$f^{*}(u_{2i-1}u'_{2i-1}) = k + 13i - 12, \ 1 \le i \le \lceil \frac{n}{2} \rceil.$$

$$f^{*}(u_{2i}u'_{2i}) = k + 13i - 8, \ 1 \le i \le \lfloor \frac{n}{2} \rfloor.$$

 $Clearly \ f[V(G)] \cup \{f^*(e): e \in E(G)\} = \{k, \ k+1, \ k+2, \ldots, \ p+q+k-1\}.$

An example of 2-super cube root cube mean labeling of $A(T_7) \odot K_1$ [Triangle starts from u_2] is shown in Figure 3.

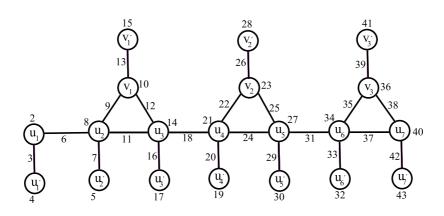


Figure 3: 2-super cube root cube mean labeling of $A(T_7) \odot K_1$ [Triangle starts from u_2]

From the above cases, $A(T_n) \odot K_1$ is a k-super cube root cube mean graph. \Box

Theorem 3.3. The graph $A(T_n) \odot 2K_1$ is a k-super cube root cube mean graph.

Proof. Let $G = A(T_n) \odot 2K_1$ Here consider two cases. **Case 1:** The triangle starts from u_1 . Let $V(G) = \{u_i, u'_i, u''_i : 1 \le i \le n\} \cup \{v_i, v'_i, v''_i : 1 \le i \le \lfloor \frac{n}{2} \rfloor\}$ and $E(G) = \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{u_{2i-1}v_i, u_{2i}v_i, v_iv'_i, v_iv''_i : 1 \le i \le \lfloor \frac{n}{2} \rfloor\}$ $\cup \{u_i u'_i, u_i u''_i : 1 \le i \le n\}.$ Here, $p = |V(G)| = \begin{cases} \frac{9n}{2}, \text{ for } n \text{ is even} \\ \frac{9n-3}{2}, \text{ for } n \text{ is odd.} \end{cases}$ and $q = |E(G)| = \begin{cases} 5n-1, \text{ for } n \text{ is even} \\ 5n-3, \text{ for } n \text{ is odd.} \end{cases}$ Therefore $p + q = \begin{cases} \frac{19n-2}{2}, \text{ for } n \text{ is odd.} \\ \frac{19n-9}{2}, \text{ for } n \text{ is odd.} \end{cases}$ Now define a function $f: V(G) \rightarrow \{k, k+1, k+2, \dots, p+q+k-1\}$ by $f(u_{2i-1}) = k + 19i - 15, \ 1 \le i \le \lfloor \frac{n}{2} \rfloor.$ $f(u_2) = \begin{cases} k+11, \ k = 1, 2, 3, 4, 5, 6; \\ k+12, \ otherwise. \end{cases}$ $f(u_{2i}) = k + 19i - 7, \ 2 \le i \le \lfloor \frac{n}{2} \rfloor.$ $f(v_i) = k + 19i - 10, \ 1 \le i \le \lfloor \frac{n}{2} \rfloor.$ $f(v'_i) = k + 19i - 14, \ 1 \le i \le \lfloor \frac{n}{2} \rfloor.$ $f(\mathbf{v}''_{i}) = \mathbf{k} + 19\mathbf{i} - 6, \ 1 \le \mathbf{i} \le \lfloor \frac{n}{2} \rfloor.$ $f(\mathbf{u}'_{2i-1}) = \mathbf{k} + 19\mathbf{i} - 19, \ 1 \le \mathbf{i} \le \lfloor \frac{n}{2} \rfloor.$ $f(\mathbf{u}''_{2i-1}) = \mathbf{k} + 19\mathbf{i} - 18, \ 1 \le \mathbf{i} \le \lfloor \frac{n}{2} \rfloor.$
$$\begin{split} \mathbf{f}(\mathbf{u}_{2i}') &= \mathbf{k} + 19\mathbf{i} - 3, \, 1 \le \mathbf{i} \le \lfloor \frac{n}{2} \rfloor. \\ \mathbf{f}(\mathbf{u}_{2i}'') &= \mathbf{k} + 19\mathbf{i} - 2, \, 1 \le \mathbf{i} \le \lfloor \frac{n}{2} \rfloor. \end{split}$$
Then the edge labels are $f^*(u_{2i-1}u_{2i}) = k + 19i - 11, \ 1 \le i \le \lfloor \frac{n}{2} \rfloor.$ $f^*(u_{2i}u_{2i+1}) = k + 19i - 1, \ 1 \le i \le \left\lceil \frac{n-2}{2} \right\rceil.$ $f^*(u_{2i-1}v_i) = k + 19i - 13, \ 1 \le i \le \lfloor \frac{n}{2} \rfloor.$ $f^*(u_{2i}v_i) = k + 19i - 9, \ 1 \le i \le \lfloor \frac{n}{2} \rfloor.$ $f^*(v_i v'_i) = k + 19i - 12, \ 1 \le i \le \lfloor \frac{n}{2} \rfloor.$ $f^*(v_1v_1'') = \begin{cases} k+12, \ k=1,2,3,4,5,6;\\ k+11, \ otherwise. \end{cases}$ $f^*(v_i v_i'') = k + 19i - 8, \ 2 \le i \le \lfloor \frac{n}{2} \rfloor.$ $f^*(\mathbf{u}_{2i-1}\mathbf{u}'_{2i-1}) = \mathbf{k} + 19\mathbf{i} - 17, \ 1 \le \mathbf{i} \le \left\lceil \frac{n}{2} \right\rceil.$ $f^*(\mathbf{u}_{2i-1}\mathbf{u}''_{2i-1}) = \mathbf{k} + 19\mathbf{i} - 16, \ 1 \le \mathbf{i} \le \left\lceil \frac{n}{2} \right\rceil.$ $\mathbf{f}^*(\mathbf{u}_{2i}\mathbf{u}'_{2i}) = \mathbf{k} + 19\mathbf{i} - 5, \ 1 \le \mathbf{i} \le \lfloor \frac{n}{2} \rfloor.$ $f^*(u_{2i}u_{2i}'') = k + 19i - 4, \ 1 \le i \le \lfloor \frac{n}{2} \rfloor.$ Clearly $f[V(G)] \cup \{f^*(e) : e \in E(G)\} = \{k, k+1, k+2, \dots, p+q+k-1\}.$ An example of 6-super cube root cube mean labeling of $A(T_6) \odot 2K_1$ [Triangle start from u_2 is shown in Figure 4.

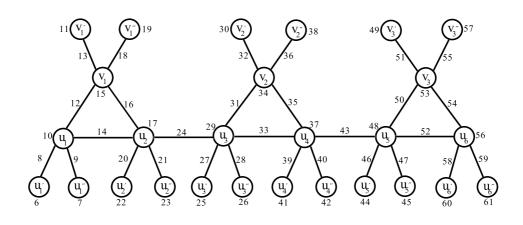


Figure 4: 6-super cube root cube mean labeling of $A(T_6) \odot 2K_1$ [Triangle starts from u_1]

Case 2: The triangle starts from u₂.

Let V(G) = { $u_i, u'_i, u''_i : 1 \le i \le n$ } \cup { $v_i, v'_i, v''_i : 1 \le i \le \left\lceil \frac{n-2}{2} \right\rceil$ } and E(G) = { $u_i u_{i+1} : 1 \le i \le n-1$ } \cup { $u_{2i}v_i, u_{2i+1}v_i, v_iv'_i, v_iv''_i : 1 \le i \le \left\lceil \frac{n-2}{2} \right\rceil$ } \cup { $u_i u'_i, u_i u''_i : 1 \le i \le n$ }. Here p = $|V(G)| = \begin{cases} \frac{9n-6}{2}, \text{ for } n \text{ is even} \\ \frac{9n-3}{2}, \text{ for } n \text{ is odd.} \end{cases}$ and q = $|E(G)| = \begin{cases} 5n-5, \text{ for } n \text{ is even} \\ 5n-3, \text{ for } n \text{ is odd.} \end{cases}$ Therefore p + q = $\begin{cases} \frac{19n-16}{2}, \text{ for } n \text{ is even} \\ \frac{19n-9}{2}, \text{ for } n \text{ is odd.} \end{cases}$ Now define a function f : V(G) \rightarrow {k, k + 1, k + 2, ..., p + q + k - 1 } by f(u_{2i-1}) = k + 19i - 17, 1 \le i \le \left\lceil \frac{n}{2} \right\rceil.

$$f(u_2) = \begin{cases} k+8, \ k = 1, 2, 3, 4, 5, 6, 7, 8; \\ k+10, \ otherwise. \end{cases}$$

$$f(u_{2i}) = \mathbf{k} + 19\mathbf{i} - 9, \ 2 \le \mathbf{i} \le \lfloor \frac{n}{2} \rfloor.$$

$$f(v_i) = \mathbf{k} + 19\mathbf{i} - 5, \ 1 \le \mathbf{i} \le \lceil \frac{n-2}{2} \rceil.$$

$$f(v'_i) = \mathbf{k} + 19\mathbf{i} - 8, \ 1 \le \mathbf{i} \le \lceil \frac{n-2}{2} \rceil.$$

$$f(v''_i) = \mathbf{k} + 19\mathbf{i} - 2, \ 1 \le \mathbf{i} \le \lceil \frac{n-2}{2} \rceil.$$

$$f(u'_{2i-1}) = \mathbf{k} + 19\mathbf{i} - 19, \ 1 \le \mathbf{i} \le \lceil \frac{n}{2} \rceil.$$

$$f(u''_{2i-1}) = \mathbf{k} + 19\mathbf{i} - 15, \ 1 \le \mathbf{i} \le \lceil \frac{n}{2} \rceil.$$

$$f(u'_{2i}) = \mathbf{k} + 19\mathbf{i} - 14, \ 1 \le \mathbf{i} \le \lfloor \frac{n}{2} \rfloor.$$

$$f(u''_2) = \begin{cases} k + 10, \ k = 1, 2, 3, 4, 5, 6, 7, 8; \\ k + 8, \ otherwise. \end{cases}$$

$$\begin{split} f(u_{2i}') &= \mathbf{k} + 19\mathbf{i} - 11, \ 2 \leq \mathbf{i} \leq \left\lfloor \frac{n}{2} \right\rfloor.\\ \text{Then the edge labels are}\\ f^*(\mathbf{u}_{2i-1}\mathbf{u}_{2i}) &= \mathbf{k} + 19\mathbf{i} - 13, \ 1 \leq \mathbf{i} \leq \left\lfloor \frac{n}{2} \right\rfloor.\\ f^*(u_{2i}\mathbf{u}_{2i+1}) &= \mathbf{k} + 19\mathbf{i} - 3, \ 1 \leq \mathbf{i} \leq \left\lceil \frac{n-2}{2} \right\rceil.\\ f^*(u_{2i}\mathbf{v}_i) &= \mathbf{k} + 19\mathbf{i} - 7, \ 1 \leq \mathbf{i} \leq \left\lceil \frac{n-2}{2} \right\rceil.\\ f^*(u_{2i+1}\mathbf{v}_i) &= \mathbf{k} + 19\mathbf{i} - 1, \ 1 \leq \mathbf{i} \leq \left\lceil \frac{n-2}{2} \right\rceil.\\ f^*(v_i\mathbf{v}_i') &= \mathbf{k} + 19\mathbf{i} - 6, \ 1 \leq \mathbf{i} \leq \left\lceil \frac{n-2}{2} \right\rceil.\\ f^*(v_i\mathbf{v}_i') &= \mathbf{k} + 19\mathbf{i} - 4, \ 1 \leq \mathbf{i} \leq \left\lceil \frac{n-2}{2} \right\rceil.\\ f^*(u_{2i-1}\mathbf{u}_{2i-1}') &= \mathbf{k} + 19\mathbf{i} - 18, \ 1 \leq \mathbf{i} \leq \left\lceil \frac{n}{2} \right\rceil.\\ f^*(u_{2i-1}\mathbf{u}_{2i-1}') &= \mathbf{k} + 19\mathbf{i} - 16, \ 1 \leq \mathbf{i} \leq \left\lceil \frac{n}{2} \right\rceil.\\ f^*(u_{2i}\mathbf{u}_{2i}') &= \mathbf{k} + 19\mathbf{i} - 12, \ 1 \leq \mathbf{i} \leq \left\lfloor \frac{n}{2} \right\rfloor.\\ f^*(u_{2i}\mathbf{u}_{2i}') &= \mathbf{k} + 19\mathbf{i} - 10, \ 1 \leq \mathbf{i} \leq \left\lfloor \frac{n}{2} \right\rfloor. \end{split}$$

Clearly
$$f[V(G)] \cup \{f^*(e) : e \in E(G)\} = \{k, k+1, k+2, \dots, p+q+k-1\}.$$

An example of 6-super cube root cube mean labeling of $A(T_5) \odot 2K_1$ [Triangle starts from u_2] is shown in Figure 5.

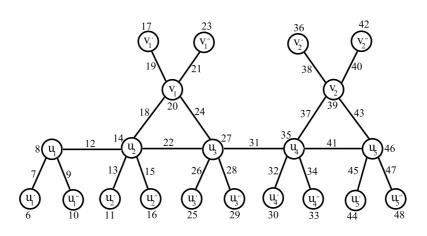


Figure 5: 6-super cube root cube mean labeling of $A(T_5) \odot 2K_1$ [Triangle starts from u_2]

From the above cases, $A(T_n) \odot 2K_1$ is a k-super cube root cube mean graph. \Box

Theorem 3.4. The graph $A(Q_n) \odot K_1$ is a k-super cube root cube mean graph.

Proof. Let $G = A(Q_n) \odot K_1$ Here consider two cases.

Case 1: Quadrilateral starts from u_1 .

Let V(G) = { $u_i, u'_i : 1 \le i \le n$ } \cup { $v_i, w_i, v'_i, w'_i : 1 \le i \le \lfloor \frac{n}{2} \rfloor$ } and E(G) = { $u_i u_{i+1} : 1 \le i \le n-1$ } \cup { $u_{2i-1}v_i, u_{2i}w_i, v_iv'_i, v_iw_i, w_iw'_i : 1 \le i \le \lfloor \frac{n}{2} \rfloor$ } \cup { $u_i u'_i : 1 \le i \le n$ }.

here
$$p = \begin{cases} 4n, \text{ for } n \text{ is even} \\ 4n-2, \text{ for } n \text{ is odd.} \end{cases} \& q = \begin{cases} \frac{9n-2}{2}, \text{ for } n \text{ is even} \\ \frac{9n-7}{2}, \text{ for } n \text{ is odd.} \end{cases}$$

Therefore
$$p + q = \begin{cases} \frac{17n-2}{2}, \text{ for } n \text{ is even} \\ \frac{17n-11}{2}, \text{ for } n \text{ is odd.} \end{cases}$$

Now define a function
f: V(G)
$$\rightarrow \{k, k+1, k+2, ..., p+q+k-1\}$$
 by
f(u_{2i-1}) = k + 17i - 15, 1 $\leq i \leq \lceil \frac{n}{2} \rceil$.
f(u₂) = $\begin{cases} k+12, k=1 \\ k+13, otherwise. \end{cases}$
f(u_{2i}) = k + 17i - 4, 2 $\leq i \leq \lfloor \frac{n}{2} \rfloor$.
f(w₁) = $\begin{cases} k+8, k=1,2,3,...,11; \\ k+9, otherwise. \end{cases}$
f(w_i) = k + 17i - 8, 2 $\leq i \leq \lfloor \frac{n}{2} \rfloor$.
f(v_i) = k + 17i - 11, 1 $\leq i \leq \lfloor \frac{n}{2} \rfloor$.
f(v_i) = k + 17i - 14, 1 $\leq i \leq \lfloor \frac{n}{2} \rfloor$.
f(w'₁) = $\begin{cases} k+13, k=1; \\ k+12, otherwise. \end{cases}$
f(w'₁) = $\begin{cases} k+13, k=1; \\ k+12, otherwise. \end{cases}$
f(w'₂) = k + 17i - 17, 1 $\leq i \leq \lfloor \frac{n}{2} \rfloor$.
f(u'_{2i-1}) = k + 17i - 17, 1 $\leq i \leq \lfloor \frac{n}{2} \rfloor$.
Then the edge labels are
f*(u₁u₂) = $\begin{cases} k+9, k=1, 2, 3, ..., 11 \\ k+8, otherwise. \end{cases}$

$$\begin{aligned} f^*(\mathbf{u}_{2i-1}\mathbf{u}_{2i}) &= \mathbf{k} + 17\mathbf{i} \cdot 9, \ 2 \leq \mathbf{i} \leq \left\lfloor \frac{n}{2} \right\rfloor, \\ f^*(\mathbf{u}_{2i}\mathbf{u}_{2i+1}) &= \mathbf{k} + 17\mathbf{i} \cdot 1, \ 1 \leq \mathbf{i} \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ f^*(\mathbf{u}_{2i-1}\mathbf{v}_i) &= \mathbf{k} + 17\mathbf{i} \cdot 13, \ 1 \leq \mathbf{i} \leq \left\lfloor \frac{n}{2} \right\rfloor, \\ f^*(\mathbf{u}_{2i}\mathbf{w}_i) &= \mathbf{k} + 17\mathbf{i} \cdot 6, \ 1 \leq \mathbf{i} \leq \left\lfloor \frac{n}{2} \right\rfloor, \\ f^*(\mathbf{v}_i\mathbf{w}_i) &= \mathbf{k} + 17\mathbf{i} \cdot 10, \ 1 \leq \mathbf{i} \leq \left\lfloor \frac{n}{2} \right\rfloor, \\ f^*(\mathbf{v}_i\mathbf{w}_i') &= \mathbf{k} + 17\mathbf{i} \cdot 12, \ 1 \leq \mathbf{i} \leq \left\lfloor \frac{n}{2} \right\rfloor, \\ f^*(\mathbf{w}_i\mathbf{w}_i') &= \mathbf{k} + 17\mathbf{i} \cdot 7, \ 1 \leq \mathbf{i} \leq \left\lfloor \frac{n}{2} \right\rfloor, \\ f^*(\mathbf{u}_{2i-1}\mathbf{u}_{2i-1}) &= \mathbf{k} + 17\mathbf{i} \cdot 16, \ 1 \leq \mathbf{i} \leq \left\lfloor \frac{n}{2} \right\rfloor, \\ f^*(\mathbf{u}_{2i}\mathbf{u}_{2i}') &= \mathbf{k} + 17\mathbf{i} \cdot 3, \ 1 \leq \mathbf{i} \leq \left\lfloor \frac{n}{2} \right\rfloor, \\ \text{Clearly } \mathbf{f}[\mathbf{V}(\mathbf{G})] \cup \{\mathbf{f}^*(\mathbf{e}) : \mathbf{e} \in \mathbf{E}(\mathbf{G})\} = \{\mathbf{k}, \ \mathbf{k} + 1, \ \mathbf{k} + 2, \dots, \ \mathbf{p} + \mathbf{q} + \mathbf{k} - 1\}. \end{aligned}$$

An example of 2-super cube root cube mean labeling of $A(Q_6) \odot K_1$ [Quadrilateral starts from u_1] is shown in Figure 6.

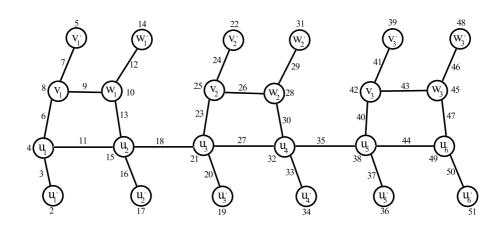


Figure 6: 2-super cube root cube mean labeling of $A(Q_6) \odot K_1[$ Quadrilateral starts from $u_1]$

Case 2: Quadrilateral starts from u₂.

Let V(G) = { u_i , u'_i : $1 \le i \le n$ } \cup { v_i , w_i , v'_i , w'_i : $1 \le i \le [\frac{n-2}{2}]$ } and E(G) = { $u_i u_{i+1}$: $1 \le i \le n-1$ } \cup { $u_{2i} v_i$, $u_{2i+1} w_i$, $v_i v'_i$, $v_i w_i$, $w_i w'_i$: $1 \le i \le \left\lceil \frac{n-2}{2} \right\rceil$ } \cup { $u_i u'_i$: $1 \le i \le n$ }. here $p = \begin{cases} 4n-4, \ for \ n \ is \ even \\ 4n-2, \ for \ n \ is \ odd. \end{cases}$ & $q = \begin{cases} \frac{9n-12}{2}, \ for \ n \ is \ even \\ \frac{9n-7}{2}, \ for \ n \ is \ even \\ \frac{9n-7}{2}, \ for \ n \ is \ odd. \end{cases}$ Therefore $p + q = \begin{cases} \frac{17n-20}{2}, \ for \ n \ is \ even \\ \frac{17n-11}{2}, \ for \ n \ is \ odd. \end{cases}$ Now define a function f : V(G) \rightarrow {k, k + 1, k + 2, ..., p + q + k - 1 } by f(u_{2i-1}) = k + 17i - 17, \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil. f(v_i) = k + 17i - 7, \ 1 \le i \le \left\lceil \frac{n-2}{2} \right\rceil. f(w_1) = $\begin{cases} k+12, \ k=1, \ 2, \ldots, 7 \\ k+13, \ otherwise. \end{cases}$

$$\begin{split} & f(w_i) = k + 17i - 4, \ 2 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f(v_i') = k + 17i - 10, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f(w_i') = k + 17i - 15, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f(u_{2i-1}') = k + 17i - 15, \ 1 \leq i \leq \left\lceil \frac{n}{2} \right\rceil, \\ & f(u_{2i}') = k + 17i - 15, \ 1 \leq i \leq \left\lceil \frac{n}{2} \right\rceil, \\ & f(u_{2i}') = k + 17i - 13, \ 2 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, \\ & f(u_{2i}') = k + 17i - 13, \ 2 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, \\ & Then the edge labels are \\ & f^*(u_1u_2) = \begin{cases} k + 4, \ k = 1, \ 2, 3, 4; \\ k + 3, \ otherwise. \end{cases} \\ & f^*(u_{2i-1}u_{2i}) = k + 17i - 14, \ 2 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, \\ & f^*(u_2u_3) = \begin{cases} k + 13, \ k = 1, \ 2, 3, \ldots, \ 7; \\ k + 12, \ otherwise. \end{cases} \\ & f^*(u_{2i}u_{2i+1}) = k + 17i - 5, \ 2 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i}u_{2i+1}) = k + 17i - 9, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i+1}w_i) = k + 17i - 2, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(v_iw_i) = k + 17i - 6, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(w_iw_i') = k + 17i - 3, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(w_iw_i') = k + 17i - 3, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 16, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ & f^*(u_{2i-1}u_{2i-1}') = k + 17i - 12, \ 1 \leq i \leq \left\lceil \frac{n-2$$

An example of 2-super cube root cube mean labeling of $A(Q_5) \odot K_1$ [Quadrilateral starts from u_2] is shown in Figure 7.

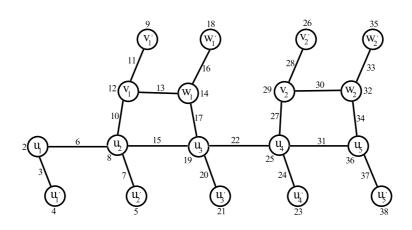


Figure 7: 2-super cube root cube mean labeling of $A(Q_5) \odot K_1[$ Quadrilateral starts from $u_2]$

From the above cases, $A(Q_n) \odot K_1$ is a k-super cube root cube mean graph. \Box

Theorem 3.5. The graph $P_n \odot K_{1,2}$ is a k-super cube root cube mean graph.

Proof. Let $G = P_n \odot K_{1,2}$ Let $V(G) = \{u_i, v_i, w_i, 1 \le i \le n\}$ and $E(G) = \{u_i v_i, u_i w_i, 1 \le i \le n\} \cup \{u_i u_{i+1}, 1 \le i \le n-1\}$ Here p = |V(G)| = 3n and q = |E(G)| = 3n - 1Hence p + q = 6n - 1. Now define a function $f : V(G) \rightarrow \{k, k + 1, k + 2, ..., p + q + k - 1\}$ by $f(u_i) = k + 6i - 4, 1 \le i \le n$ $f(v_i) = k + 6i - 6, 1 \le i \le n$ and $i \ne 2$ $f(v_2) = \begin{cases} k + 5, k = 1, 2; \\ k + 6, \text{ otherwise.} \end{cases}$ $f(w_i) = k + 6i - 2, 1 \le i \le n$ Then the edge labels are $f^*(u_i v_i) = k + 6i-5, 1 \le i \le n$ $f^*(u_i w_i) = k + 6i-3, 1 \le i \le n$ $f^*(u_1 u_2) = \begin{cases} k+6, k=1,2; \\ k+5, otherwise. \end{cases}$ $f^*(u_i u_{i+1}) = k + 6i - 1, 2 \le i \le n - 1$ Hence $f[V(G)] \cup \{f^*(e) : e \in E(G)\} = \{k, k+1, k+2, ..., p+q+k-1\}.$ Therefore $P_n \odot K_{1,2}$ is a k-super cube root cube mean graph.

An example of 12-super cube root cube mean labeling of $P_3 \odot K_{1,2}$ is shown in Figure 8.

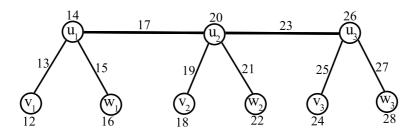


Figure 8: 12-super cube root cube mean labeling of $P_3 \odot K_{1,2}$

Theorem 3.6. The graph $P_n \odot K_{1,3}$ is a k-super cube root cube mean graph.

 $\begin{array}{ll} \textbf{Proof.} & \text{Let } G = P_n \odot K_{1,3} \\ \text{Let } V(G) = \{u_i, v_i, w_i, s_i, 1 \leq i \leq n\} \text{ and} \\ E(G) = \{u_i v_i, u_i w_i, u_i s_i, 1 \leq i \leq n\} \cup \{u_i u_{i+1}, 1 \leq i \leq n-1\} \\ \text{Here } p = |V(G)| = 4n \text{ and } q = |E(G)| = 4n-1 \\ \text{Hence } p + q = 8n-1. \\ \text{Now define a function} \\ f: V(G) \rightarrow \{k, k+1, k+2, \dots, p+q+k-1\} \text{ by} \\ f(u_i) = k + 8i - 4, 1 \leq i \leq n \\ f(v_1) = k, \text{ for all } k \\ f(v_i) = k + 8i - 7, 1 \leq i \leq n \text{ and } i \neq 2 \\ f(w_2) = \begin{cases} k+8, \ k=1, 2, 3, 4, 5, 6; \\ k+9, \ otherwise. \end{cases} \end{array}$

$$\begin{split} f(s_i) &= k + 8i - 2, 1 \leq i \leq n. \\ \text{Then the edge labels are} \\ f^*(u_1 u_2) &= \begin{cases} k + 9, \ k = 1, 2, 3, 4, 5, 6; \\ k + 8, \ otherwise. \\ f^*(u_i u_{i+1}) &= k + 8i, 2 \leq i \leq n - 1 \\ f^*(u_i v_i) &= k + 8i - 6, 1 \leq i \leq n \\ f^*(u_i w_i) &= k + 8i - 5, 1 \leq i \leq n \\ f^*(u_i s_i) &= k + 8i - 3, 1 \leq i \leq n. \\ \text{Hence } f[V(G)] \cup \{f^*(e) : e \in E(G)\} = \{k, \ k + 1, \ k + 2, \dots, \ p + q + k - 1\}. \\ \text{Therefore } P_n \odot K_{1,3} \text{ is a k-super cube root cube mean graph.} \end{split}$$

An example of 5-super cube root cube mean labeling of $P_3 \odot K_{1,3}$ is shown in Figure 9.

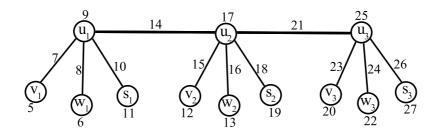


Figure 9: 5-super cube root cube mean labeling of $P_3 \odot K_{1,3}$

References

- [1] J.A Gallian, "A dynamic survey of graph labeling", *The Electronic Journal of Combinatorics*, 2019, # DS6. [On line]. Available: https://bit.ly/2AojJ92
- [2] F. Harary, *Graph Theory.* Narosa publishing House Reading, New Delhi, 1988.
- [3] S. Kulandhai Therese and K. Romila, "Cube root Cube Mean labeling of Graphs", *International Journal of Mathematics Trends and Technology*, vol. 65, no. 2, 2019. [On line]. Available: https://bit.ly/30Gy1wq

920

- [4] V. Princy Kala, "K-Super Cube root cube mean labeling of graphs", *Proyecciones (Antofagasta)*, vol. 40, no. 5, pp. 1097–1116, 2021. doi: 10.22199/issn.0717-6279-4258
- [5] S. Somasundaram and R. Ponraj, "Mean labeling of graphs", *National Academy of Science Letters*, vol. 26, pp. 210-213, 2013.
- [6] V. S. Radhika and A. Vijayan, "Super Cube root Cube Mean labeling of Graphs", *Journal of Science and Technology*, vol. 5, pp. 17-24, 2020.
- [7] S. Sandhya, S. Somasundaram and S. Anusa, "Some More Results on Root Square mean Graphs", *Journal of Mathematics Research*, vol. 7, no. 1, pp. 72-81, 2015. [On line]. Available: https://bit.ly/30DTCpd

V. Princy Kala

Assistant Professor, Department of Mathematics, Holy Cross College (Autonomous), Nagercoil-629 004, TN, India e-mail: princykala@holycrossngl.edu.in https://orcid.org/0000-0001-6264-1100